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Abstract

The problem of a crack growing steadily and quasi!statically along a brittle:ductile interface under plane
strain\ mixed mode\ and small scale yielding conditions is considered[ The ductile material is assumed to be
characterized by the J1!~ow theory of plasticity with linear strain hardening\ while the brittle material is assumed
to be linear elastic[ A displacement!based _nite element method\ exploiting the convective nature of the problem\
is utilized to solve the relevant boundary value problem[ In Part I of this work\ the corresponding asymptotic
problem was solved[ This paper addresses the full!_eld problem in order to validate the asymptotic solutions\
and to explore the physical implications of the results[ The numerical full!_eld results are found to be in good
agreement with the analytical asymptotic solutions[ In particular\ the full!_eld results strongly suggest that the
stress _elds in the vicinity of the crack tip are variable!separable of the power singular type^ and also that the
mode mix of the near!tip stress _elds is\ to a large extent\ independent of the applied elastic mode mix[ The
amplitude "the plastic stress intensity factor# and the regions of validity of the asymptotic _elds are estimated
from the full!_eld results\ and are observed to be strongly dependent on the applied mode mix[ The remote
elastic loading _elds appear to in~uence the near!tip _elds\ primarily\ through the plastic stress intensity factor[
The present work also explores the suggestion made by Bose and Ponte Castan½eda "0881# that the solutions to
the small scale yielding problem may be used in the context of a standard crack growth criterion\ requiring that
continued growth take place with a _xed near!tip crack opening pro_le\ to obtain theoretical predictions for
the dependence of interfacial toughness on the applied mode mix[ Based on the numerical results\ predictions
for mixed mode toughness of the brittle:ductile interface are reported[ The results\ which are in qualitative
agreement with available experimental data and also with some recent theoretical results\ predict a strong
dependence of interfacial toughness on mode mix[ This suggests that ductility provides the main operating
mechanism for explaining the dependence of interfacial toughness on the mode mix of the applied loading
_elds\ during steady crack growth[ Þ 0887 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

It is well known that crack growth under mixed mode conditions is often observed in practice
due to a number of reasons\ including asymmetry of the cracked specimen in the applied loading
with respect to the crack orientation\ and inhomogeneity in the material[ Potential applications of
this phenomenon range from the microscopic\ as in crack growth along grain boundaries\ to the
macroscopic\ as in delamination of composite materials and decohesion of coatings and thin _lms[
A particular case of mixed mode fracture is one where the crack propagates along the interface
between two dissimilar materials\ with at least one of the materials having appreciable ductility[ It
has been observed experimentally "Trantina\ 0861^ Anderson et al[\ 0863^ more recently\ Liechti
and Hanson\ 0877^ Cao and Evans\ 0878^ Wang and Suo\ 0889^ Liechti and Chai\ 0880\ 0881^ see
Hutchinson and Suo\ 0880\ for an extensive literature survey on this subject# that the interfacial
toughness for initiation and for crack growth is a strong function of the mode mix of the applied
loading _elds\ with the near mode II toughness being at times a factor of _ve times or even higher
than the near mode I toughness[ Experimental work by Anderson et al[ "0863# suggested that
roughness of the fracture surface due to microbranching of the main crack into the more brittle
phase may have contributed to the increase in overall toughness with increasing shear[ Evans and
Hutchinson "0878# proposed a model which accounted for mixed mode interfacial toughness
through asperity interaction behind the crack tip\ for cracks along the interface between two brittle
materials[ Liechti and Chai "0881# measured the toughness of a glass:epoxy interface over a wide
range of mode mixes\ and carried out _nite element analysis to study the near!front behavior
during crack initiation[ The authors considered plastic and bulk viscoelastic dissipation along with
asperity interaction to account for the experimentally measured dependence of toughness on mode
mix[ Based on the results\ they argued that even the combined e}ects of dissipation and asperity
interaction may not account for the dependence of interfacial toughness on mode mix when one
of the two materials is su.ciently ductile[ They noted that the inelastic deformation of the epoxy
phase merited further consideration[ Recently\ Bose and Ponte Castan½eda "0881\ henceforth
referred to as BPC#\ and Tvergaard and Hutchinson "0882\ henceforth referred to as TH# have
independently proposed theoretical models to account for the strong dependence of interfacial
toughness on mode mix[ While the models proposed by the above authors "BPC vs TH# di}er in
their details\ they both conclude that plasticity may be playing an important role in determining
interfacial toughness as a function of mode mix[ Both these models will be discussed in some detail
in the rest of the paper[

In Part I of this work "Ponte Castan½eda and Mataga\ 0880*henceforth referred to as PCM#\ the
near!tip asymptotic problem of a crack growing steadily and quasi!statically along a brittle:ductile
interface was solved[ The authors considered both plane strain and anti!plane strain crack growth[
For crack growth under plane strain conditions\ it was shown that only four types of variable!
separable solutions are possible in the vicinity of the propagating crack tip[ Two of these four
solutions are of the tensile:compressive type with the stress _elds being predominantly either tensile
or compressive in nature in the line ahead of the crack\ while the other two solutions are of the
shear type with predominantly either positive or negative shear stress _elds in the line ahead of the
crack[ In general\ no other intermediate solutions were found[ The results of the above work
suggest that\ to a large extent\ the mode mix of the near!tip _elds may be independent of the mode
mix of the applied loading _elds\ and also that\ the e}ect of the far!_eld is felt at the crack tip
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primarily through the plastic stress intensity factor[ The above results are somewhat unexpected\
given the well!known corresponding results for stationary cracks in homogeneous materials "Shih\
0863#^ where the near!tip mode mix depends on the far!_eld mode mix and varies continuously
with it[ Subsequently\ BPC extended the work of PCM to the problem of steady quasi!static crack
growth along the interface between two generally dissimilar elastoplastic solids[ The main results
of the latter work generalize those reported by PCM[ In addition to the asymptotic results\ some
preliminary _nite element results of the corresponding full!_eld problem were also reported by
BPC[ The full!_eld results appeared to be consistent with the predictions of the asymptotic analysis\
and indicated that for a wide range of remote loading _elds\ the near!tip stress state is either the
tensile or the compressive state predicted by the asymptotic analysis[ Based on the asymptotic and
full!_eld results\ the authors explored possible physical implications of the discrete near!tip mode
mix phenomenon[ A ductile mechanism to explain the experimentally observed dependence of
interfacial toughness on mode mix was proposed[

Bose and Ponte Castan½eda "0884# further developed the ductile mechanism proposed by BPC[
By making use of the near!tip results that were obtained in earlier work\ the authors constructed
approximate full!_eld solutions to the plane strain small scale yielding problem of steady quasi!
static crack growth along a brittle:ductile interface[ These approximate solutions satis_ed the
criteria that they asymptotically approach the near!tip tensile _elds close to the crack tip\ and the
well!known mixed mode elastic singular _elds in the far!_eld[ The solutions involved certain
degrees of freedom "the plastic stress intensity factor being one of them# which were optimized
through the application of a variational statement of compatibility for a sequence of small scale
yielding problems with di}erent values of the applied mode mix[ The full!_eld solutions were
subsequently used in the context of a standard crack growth criterion\ requiring that continued
growth take place with a constant crack opening pro_le\ to obtain theoretical predictions for the
dependence of interfacial toughness on mode mix[ The results\ which were in qualitative agreement
with available experimental data "Cao and Evans\ 0878^ Liechti and Chai\ 0881^ and others#\ and
also with the theoretical results by TH\ predicted a strong dependence of toughness on mode mix\
and also on material properties\ particularly\ on the hardening parameter[ Although the above
work helped in isolating a physical mechanism that is responsible for the strong dependence of
interfacial toughness on mode mix\ it depended on the availability of the asymptotic solutions\
and did not directly address the issue of the validity of the asymptotic solutions themselves[

Thus\ while asymptotic analyses of the above kind are important\ they need to be veri_ed by
full!_eld numerical studies[ The plastic stress intensity factor needs to be determined from the
numerical results[ Also\ the asymptotic results do not provide any information on the region of
validity of the near!tip _elds[ The region of validity is important in order to assess the physical
relevance of the near!tip _elds[ The latter _elds can be expected to be signi_cant physically only if
their regions of validity are bigger than the fracture process zone\ which is typically estimated to
be a small fraction of the size of the plastic zone at the crack tip[ The above observations regarding
the necessity of a full!_eld analysis are generally true for any problem involving an analysis of
crack!tip _elds\ where the governing equations admit an asymptotic solution without having to
consider the details of remote loading conditions and:or geometry of the cracked specimen[
The asymptotic analysis of the mixed mode crack growth problem\ however\ leaves some more
unanswered questions[ Most signi_cantly\ it does not predict the conditions under which one of
the "only# four near!tip states would be preferred over the other three[ Full!_eld numerical studies
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have recently been carried out by Omprakash and Narasimhan "0885# for anti!plane strain quasi!
static crack growth along a brittle:ductile interface\ and by Ranjith and Narasimhan "0885# for
anti!plane strain dynamic crack growth at a brittle:ductile interface[ The near!tip solutions obtained
by Omprakash and Narasimhan agree very well with the asymptotic anti!plane strain solutions
reported in PCM[ The authors also studied the range of dominance of the asymptotic _elds of
PCM as a function of the material parameters\ and concluded that as long as the material strain!
hardens su.ciently\ the asymptotic _elds have signi_cant ranges of validity[

To address the issues discussed in the last paragraph\ in the present work the small scale yielding
problem for plane strain crack growth under mixed mode conditions is solved numerically using
the _nite element method[ The primary aim of this work is to verify the extent to which the
conclusions that were deduced at the asymptotic level are true as one moves {{su.ciently|| close to
the growing crack tip[ The issue of identifying the remote conditions that trigger one near!tip state
as opposed to the others is explored in some detail[ To this end\ solutions to the small scale yielding
problem are obtained for a wide range of remote loading _elds with di}erent mode mixes[
Subsequently\ by noting the near!tip state "in particular\ the near!tip mode mix# for a given remote
condition\ connections are made among the wide range of possible remote loading _elds and their
associated near!tip states[ Based on the numerical results\ the relevance of the ductile mechanism
"BPC# to explain the experimentally observed dependence of interfacial toughness on the mode
mix of the remote loading _elds is further explored[ The numerical results for interfacial toughness
vs mode mix reported here based on the full!_eld _nite element results to the small scale yielding
problem are in qualitative agreement with experimental "Cao and Evans\ 0878^ Liechti and Chai\
0881^ and others#\ as well as available theoretical results "TH\ Bose and Ponte Castan½eda\ 0884#[

The plan of the paper is as follows[ In the next section\ the small scale yielding boundary value
problem is outlined\ and the _nite element method utilized to solve the problem is brie~y discussed[
In Section 2\ numerical results for the small scale yielding problem are presented[ Connections are
also made between the numerical results and the analytic asymptotic _elds reported earlier by
PCM[ It is observed that the asymptotic _elds may have signi_cant regions of validity^ so that
their use in making global predictions can be justi_ed[ Finally in Section 3\ the ductile mechanism
that addresses the well!known dependence of interfacial toughness on mode mix is presented\ and
the predictions based on the mechanism are discussed and compared against available experimental
and theoretical results[

1[ Formulation

Figure 0"a# depicts a plane strain crack propagating steadily and quasi!statically along the
interface between generally dissimilar materials\ under small scale yielding and mixed mode
conditions[ The uniaxial constitutive response "Fig[ 0"b## of each material is assumed to be
characterized by J1!~ow theory of plasticity\ with linear strain hardening[ The pertinent material
parameters are\ for each material^ the hardening parameter a"r#\ which is the ratio of the "constant#
tangent modulus in tension E "r#

t to the Young|s modulus E"r#^ the Poisson|s ratio\ n"r#^ and the yield
stress in shear\ t"r#

9 [ Here\ the superscript in parenthesis "r � 0\ 1# refers to the materials in the
lower\ and upper halves\ respectively[

Let xi "i � 0\ 1\ 2# be a Cartesian coordinate system of _xed orientation traveling with the crack
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Fig[ 0[ "a# Steady!state crack growth under small scale yielding conditions[ "b# Uniaxial stressÐstrain relation for a
ductile material that deforms according to the J1!~ow theory of plasticity with linear strain hardening[

tip such that the x2!axis lies along the crack edge as shown in Fig[ 0"a#[ Also\ let r\ u be polar
coordinates in the x0Ðx1 plane\ with u � 9 coinciding with the positive x0 direction[ The crack tip
is assumed to move with velocity V � Ve0 with respect to the stationary coordinate system Xi[ It
is assumed that the crack has reached steady state so that the crack tip speed V is constant^ then
the material derivative of any _eld quantity A is given by

Aþ � −VA\0 "0#

The comma denotes di}erentiation with respect to x0[
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The dependent variables of the problem are the in!plane stress components sab "a\ b � 0\ 1#\ the
out!of!plane normal stress component s22\ and the in!plane velocities va[ Alternatively\ the above
variables may be expressed in terms of the cylindrical components of the stress tensor s\ and the
velocity vector v[ Under the plane strain assumption\ these variables are functions of the in!plane
coordinates xa only[

Under the assumption of quasi!static growth\ the governing equations are the equilibrium
equations]

"rsrr#\r¦sru\u−suu � 9 "1#

"rsru#\r¦suu\u¦sru � 9 "2#

and the constitutive equations for the two ductile solids with bilinear uniaxial stressÐstrain relations]

D �"0:E "r##ð"0¦n"r##S−n"r#Tr"S#I¦Lþ "r#SŁ "3#

where

Lþ "r# �"2:1#""a"r##−0−0#"s¾ e:se#[ "4#

In the above equations\ D �"0:1#ð9v¦"9v#TŁ is the rate!of!deformation tensor\ S � s¾ is the stress!
rate tensor\ S � s−"0:2#Tr"s#I is the stress!deviator tensor\ se � ð"2:1#S] SŁ0:1 is the e}ective stress\
I is the second!order identity tensor\ and a"r# is either a"r# or unity depending on whether a given
material particle is in a plastic loading or elastic unloading region[ The latter distinction is made
due to the singular nature of the stress _elds close to the propagating crack tip[ Thus\ earlier
work "Dean and Hutchinson\ 0870\ more recently\ Varias and Shih\ 0882\ TH\ and others# have
demonstrated that there is a plastic loading region directly ahead of the crack tip which is due to
initial plastic loading of material particles as the crack tip approaches them[ This is followed by
an elastic unloading\ wake region\ containing plastically deformed material\ which sometimes
encloses a small region of further plastic reloading adjacent to the crack ~anks[ These active "Ap^
see Fig[ 0"a## and inactive "Aw# plastic regions are in turn surrounded by a large elastic region
"Ae � A−Ap−Aw#\ which is driven on its remote "r : �# boundary Cv by the mixed mode elastic
singular tractions\ given by

Ta � s�
abnb "5#

where s� is the stress _eld associated with the mixed!mode elastic singular _elds\ and n is the outer
normal to Cv[ The elastic singular stress _elds "Williams\ 0848# are given by]

s�
ab"r\ u# � Re ðKrioŁ"1pr#−0:1s½ I

ab"u\ o#¦Im ðKrioŁ"1pr#−0:1s½ II
ab"u\ o# "6#

where K is the complex elastic stress intensity factor\ i � z−0\ r and u are as depicted in Fig[
0"a#\ Re and Im stand for real and imaginary parts\ respectively\ of a complex number\ s½ I

ab and
s½ II

ab are the mode I and mode II angular variations of the stress components\ and o is the elastic
bimaterial parameter\ de_ned by

o �"0:1p# ln ð""2−3n"0##:m"0#¦0:m"1##:""2−3n"1##:m"1#¦0:m"0##Ł[ "7#

where n"r# and m"r# are the Poisson|s ratio and shear modulus\ respectively\ of the r!th phase
"r � 0\ 1#[ The mixed mode elastic singular stress _elds can be fully characterized in terms of the
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magnitude of the complex stress intensity factor Kel "�=K=#\ and a length!scale "L# dependent
measure of phase angle c\ given by]

c � tan−0"Im"KLio#:Re"KLio##[ "8#

The choice of L is arbitrary\ and the speci_c value used in this work will be given later[ When
o � 9\ "8# reduces to]

c � tan−0"KII:KI# "09#

where KII and KI are the conventional mode II\ and mode I stress intensity factors\ respectively[
De_nitions "8# and "09# imply that c � 9> for applied tension\ while c � 289> for applied
positive:negative shear[ While there is no di}erence between positive and negative applied shear
for a crack in a homogeneous material\ lack of symmetry for an interfacial crack requires that
such a distinction be made[ Thus\ for a crack along the interface between a ductile material and a
rigid substrate\ it may be expected that positive shear would lead to opening of the crack\ while
negative shear would lead to crack closure[

The statement of the small scale yielding boundary problem is completed by specifying that the
crack faces are traction free[ Thus\ on Ct\

Ta � 9[ "00#

1[0[ Summary of the _nite element method

The governing eqns "1#Ð"3# along with the boundary conditions "5# and "00# are solved using
the _nite element method[ The _nite element formulation follows that of Dean and Hutchinson
"0870#\ with further modi_cations by Mataga "0875\ 0878# to accommodate dissimilar material
properties[ The reader is referred to the above references "see also Varias and Shih\ 0882# for a
detailed description of the formulation\ which is displacement based\ and utilizes a variational
statement of equilibrium and the steady!state nature of the problem to solve for the plastic strains
in an iterative manner[ The domain A in Fig[ 0"a# is meshed with constant strain triangles[ The
building block of the mesh is the quadrilateral "which is made up of four triangles#[ The smallest
element\ which sits in the _ne!meshed near!tip region is 09−3 times a typical measure of the plastic
zone size\ which for small scale yielding is given by]

rp �"Kel:t
"1#
9 #1:1p[ "01#

The small scale yielding condition is approximated by applying the elastic singular _elds "5# as
boundary conditions on Cv\ which is at a distance of approximately 09rp from the crack tip[ As
pointed out earlier\ the elastic _elds are characterized by the magnitude of the elastic stress intensity
factor Kel\ and a length "L# dependent measure of mode!mix c[ Following TH\ the choice L � rp

is made in this work[ By making the above choice for L\ the mode mix is described in terms of
physically meaningful quantities "roughly\ an estimate of the mode mix at the plastic boundary if
plasticity e}ects on the stress state were negligible#\ and is independent of arti_cial aspects such as
the units of length L[

For the purpose of presenting the results\ only one material pair is considered\ and the small
scale yielding problem is solved for a series of values of c^ the latter varying incrementally
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from pure positive shear "c � 89># to pure negative shear "c � −89>#\ and includes di}erent
intermediate combinations of tension and shear[ The upper half plane is assumed to be ductile
with a"1# � 9[90 and t"1#

9 � 9[90\ while the lower half is assumed to be elastic "a"0# � 0#[ The ratio
of the Young|s moduli of the halves b � E"1#:E"0# is chosen to be 9[90 in order to approximate a
ductile solid bonded over a rigid substrate[ The Poisson|s ratios of the halves are chosen to be
n"0# � n"1# � 9[384 in order to approximate incompressible phases[ The latter approximation leads
to the simplifying feature that the elastic mismatch o ¼ 9\ so that the elastic interfacial _elds are
nearly non!oscillatory[ The remote loads are such that rp � 0[ The small scale yielding results are
expected to depend upon material properties also[ However\ such a dependence is not explored in
the present work[

Note that\ because the small scale yielding problem considers a semi!in_nite crack in an in_nite
medium\ there is no length scale in the formulation other than that introduced by the plastic zone
size rp[ The unit of rp depends on the choice of units for the elastic stress intensity factor\ Kel\ and
that for the yield stress of the ductile material\ t"1#

9 [ No speci_c choice of units has been made in
the presentation of the results[ Instead\ a consistent choice of units is assumed[

1[1[ Near!tip sin`ular _elds and mode mix

As asymptotic analysis of the problem "PCM\ BPC# led to variable!separable "in r and u# stress
and velocity _elds in the vicinity of the propagating crack tip[ The near!tip "r : 9# stresses are of
the form]

s9
ij"r\ u# � Kpl"1pr#ss½9

ij"u#\ "02#

and the near!tip velocities are of the form]

n9
a "r\ u# � Kpl"V:E "1##""1pr#s:s#n½9

a "u#[ "03#

In eqns "02# and "03#\ s is the strength of the singularity of the near!tip _elds\ E"1# is the Young|s
modulus of the ductile material\ s½9

ij"u# and v½9
a "u# are angular variations of the stress\ and velocity

_elds\ respectively\ and Kpl is the plastic stress intensity factor[ While the quantities\ s\ s½9
ij"u# and

v½9
a "u# are determined by the asymptotic analysis\ Kpl remains undetermined from an asymptotic

analysis alone\ and its determination requires the solution of the small scale yielding problem[ For
a given material pair\ the authors found only four asymptotic solutions of the form "02# and "03#[
Two of these four solutions are of the {{tensile:compressive|| type\ with the stress _eld being
predominantly either tensile or compressive in nature in the line ahead of the crack^ while the other
two solutions are of the {{shear|| type\ with predominantly either positive or negative shear stress
_eld in the line ahead of the crack[

In order to describe the characteristics of the near!tip _elds more precisely\ it is useful to
introduce the following {{mode!mix|| functions]

m"r# �"1:p# tan−0"suu"r\ u � 9>#:sru"r\ u � 9>##\ "04#

n"r# �"1:p# tan−0"sru"r\ u � 89>#:suu"r\ u � 89>##\ "05#

l"r# �"1:p# tan−0"vy"r\ u � 079>#:vx"r\ u � 079>##[ "06#
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Owing to the properties of the inverse trigonometric function\ the mode!mix functions are periodic
with a period of four\ and are such that at a given r\ m � 9\ 1 for a pure mode II stress state with
positive\ negative shear\ respectively\ and m � 0\ 2 for a pure mode I stress state with tension\
compression\ respectively[ Likewise\ di}erent values of n and l can be appropriately interpreted[
In the present work\ values of the mode!mix functions in the full range of one period will be used[

When both the materials are linear elastic\ the functions m"r#\ n"r#\ and l"r# can be evaluated
from the available analytical solution to the elastic interfacial crack problem ðeqn "6#Ł[ In that
case\ denoting m"r � L# by mel\ the elastic phase angle c satis_es mel � 0−"1:p#c[ In the rest of
this paper\ the subscript {{el|| will be associated with the elastic _elds[ In the context of the small
scale yielding problem\ mel "or c# measures the mode mix of the elastic _elds that are imposed in
the far _eld as boundary conditions[ The far!_eld elastic mode mix mel can take on any value
between 9 and 3 "considering one full period#\ depending on the proportions of tension and shear
of the applied loading[

The quantities mpl � limr:9 m"r#\ npl � limr:9 n"r#\ and lpl � limr:9 l"r#\ on the other hand\ de_ne
three measures of mode mix at the crack tip "r : 9#[ The ductile material particles close to the
crack tip can be expected to yield plastically due to the singular nature of the stress _elds\ and the
subscript {{pl|| will be associated with the elastoplastic _elds in the immediate vicinity of the crack
tip[ As discussed earlier\ an asymptotic analysis of the problem suggests that only four near!tip
solutions of the form "02# and "03# are possible[ Hence\ each of the quantities mpl\ npl and lpl can
only take on one of four values[ The near!tip {{tensile|| "or {{compressive||# asymptotic solution
has an associated mpl ¼ 0 "or 2#\ and the near!tip {{positive!shear|| "or {{negative!shear||# asymptotic
solution has an associated mpl ¼ 9 "or 1#[ In general\ no intermediate values are possible[

The discussion in the above paragraphs suggest that\ in the presence of plasticity\ the near!tip
mode mix\ as quanti_ed by mpl\ npl\ and lpl is\ to a large extent\ independent of the applied elastic
mode!mix mel[ It appears that\ the e}ect of the remote loading is felt at the crack tip primarily
through the plastic intensity factor[

1[2[ Plastic stress intensity factor

An asymptotic analysis only provides partial "although crucial# information about the near!tip
_elds[ The amplitude of the near!tip _elds\ Kpl\ cannot be determined from the results of the
asymptotic analysis alone[ The solution of the small scale yielding problem is necessary to determine
Kpl\ and in this section\ the procedure for determining Kpl from the small scale yielding results is
brie~y outlined[ To this end it is useful to introduce\ following Sharma et al[ "0882#\ the functions]

Bij"r\ u# � sij"r\ u#:"1pr#ss½9
ij"r\ u# "07#

where sij"r\ u# "i j � xx\ yy\ xy\ and zz# are the stress components as obtained from the small scale
yielding results for a given c\ s is the strength of singularity of either the {{tensile|| "or {{com!
pressive||#\ or the {{positive!shear|| "or {{negative!shear||# near!tip solution\ and is known from the
results of the asymptotic analysis\ and s½9

ij"u# are the appropriate asymptotic angular variations\
also known from the results of the asymptotic analysis[

For a given c\ if the small scale yielding stress _eld sij"r\ u# is of the variable!separable form
"02#\ then\ limr:9 Bij"r\ u# is independent of the speci_c i j!combination\ and u\ and is equal to Kpl[
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Depending on the near!tip stress state\ Kpl may be thought of as either the {{tensile||\ or the {{shear||
plastic stress intensity factor "see BPC#[ Thus\ for a given c we expect]

lim
r:9

Bij"r\ u# � Kpl [i\ j\ u "08#

to yield either the {{tensile||\ or the {{shear|| plastic stress intensity factor[ Thus\ the determination
of Kpl requires both the small scale yielding and the asymptotic results[ Note that\ relations similar
to "07# and "08# can also be de_ned in terms of the components of the stress deviator tensor\ and
those of the velocity vector[

Since the results of the asymptotic analysis suggest that the near!tip _elds are a}ected by the
remote loading _elds\ to a large extent\ only through the plastic stress intensity factor^ it is natural
to expect Kpl to be a function of c[

1[3[ A summary of the objectives of the small scale yieldin` analysis

The solutions ðrelations "02# and "03#Ł to the asymptotic problem represent only a special class
of functions\ namely those variable!separable in r and u[ The possibility of non variable!separable
near!tip solutions was not explored in the asymptotic analysis[ If solutions of the latter kind exist
near the crack tip\ the _nite element small scale yielding results can be expected to capture them[
If on the other hand\ the near!tip solutions as predicted by the results of a full!_eld _nite element
analysis are of the variable!separable type only\ these results can be expected to "i# verify whether
such near!tip variable!separable solutions correspond to one of the four stress states predicted by
the asymptotic analysis^ "ii# determine the plastic stress intensity factor as a function of the applied
mode mix^ "iii# determine the regions of validity of the near!tip states as a function of the applied
mode mix^ and "iv# lead to connections between applied loading _elds and the near!tip states\ and
thus aid in the physical interpretation of the results in predicting the overall behavior of a steadily
growing crack subjected to mixed!mode loading conditions[ In particular\ the remote loading _elds
that lead to compressive near!tip stress!states may yield insight towards the possibility of crack!
tip shielding[

2[ Small scale yielding results

The results of the small scale yielding problem are presented in several sub!sections[ First\ the
radial variations of the mode mix functions "04#Ð"06# are studied\ with particular emphasis on
their near!tip behavior relative to the remote loading _elds[ Next\ the plastic zones at the crack tip
are examined[ Subsequently\ the plastic stress intensity factor is _rst estimated based on the limiting
process "08#\ and is then used to supplement the asymptotic solutions in evaluating the radial and
angular variation of the asymptotic stress and velocity _elds\ respectively\ for given values of r and
u[ The latter facilitates comparisons between the numerical results of the present work and the
analytical asymptotic solutions obtained earlier[
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2[0[ Radial variation of the mode mix functions

Far from the crack tip\ the mode mix is equal to the value that is imposed as a boundary
condition\ and hence can vary[ For example\ mel can vary continuously between 9 and 3[ On the
other hand\ the results of the asymptotic analysis predict that the near!tip mode mix does not vary
continuously\ and takes on only one of four discrete values[ The above observations suggest that\
the small scale yielding solutions for a wide range of values of the remote mode mix are likely to
share a common near!tip behavior*namely\ one of the four values of the near!tip mode mix
predicted by the asymptotic analysis[ The plastic stress intensity factor\ however\ can vary with
the remote mode mix[ The issue that becomes important next is determining the connections
among the remote and the near!tip _elds[ Based on such connections\ qualitative predictions can
be made about the behavior of the growing crack as the remote mode mix varies[ In particular\
for crack growth along a brittle:ductile interface\ the remote loading conditions that lead to a
near!tip tensile or positive!shear state should facilitate further crack growth\ while the remote
conditions that lead to a compressive or negative!shear near!tip state should lead to crack closure[

Before getting into speci_c details of the results\ some general observations are made on the
manner in which the plots are presented[ Separate _gures are presented for each of the functions
m"r#\ n"r#\ and l"r#\ respectively] each function plotted vs log"r#\ where we recall that r is normalized
such that rp � 0[ In each _gure\ plots are shown for a series of values of c\ which is noted at the
right side of each plot[ The known asymptotic near!tip predictions are also shown in each _gure
using the symbols apl"T#\ apl"C#\ apl"S¦#\ and apl"s−# "a � m\ n\ or l#\ for the near!tip tensile\
compressive\ positive!shear\ and negative!shear solutions\ respectively[ Finally\ in some of the
plots the behavior of the mode mix functions in the absence of plasticity is also shown[ The latter
serves to emphasize the fundamental di}erences between the near!tip behavior with\ and without
plasticity[

Figure 1"a#Ð"b# show radial variations of the function m[ For c in the range ð−11[4>\ 56[4>Ł
"see Fig[ 1"a##\ all the curves strongly converge towards the near!tip {{tensile|| solution
"mpl"T# � 9[812#[ The above range of values of c corresponds to primarily remote tension "c � 9>#\
with increasing positive shear for increasing values of c\ and increasing negative shear for decreas!
ing values of c[ In the above range\ the small scale yielding results are in strong support of one
aspect of the asymptotic predictions\ namely that\ the near!tip mode mix is independent of the
applied mode mix[ The results also predict that a far!_eld loading that is predominantly tensile or
positive!shear is likely to lead to a near!tip {{tensile|| state[

The dashed curves in Fig[ 1"a# are the analytical results in the absence of plasticity[ It can be
shown that these curves are straight lines with a slope of −o "which is known to be small here#[
Clearly\ the behavior of the mode!mix functions is markedly di}erent in the absence of plasticity[
In particular\ close to the crack tip the functions in the absence of plasticity do not converge
towards a single value[ In the absence of plasticity\ the near!tip mode mix strongly depends on the
remotely applied value[

Figure 1"b# shows results for increasing applied positive shear\ and\ for values of c × 89>\
positive shear mixed with compression[ The curve for c � 56[4> is repeated for the sake of
continuity with Fig[ 1"a#[ A sharp transition is observed in the near!tip behavior of the mode mix
as the applied mode mix angle c changes from 56[4Ð89>[ From a state of tension\ the near!tip state
switches to a state of compression[ A comparison between Fig[ 1"a# and "b# indicates that depending
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Fig[ 1[ Radial variations of the mode mix function m"r#[ "a# For remote tension mixed with positive shear "c × 9>#\ and
negative shear "c ³ 9>#[ "The results in the absence of plasticity are shown with dashed lines[# "b# For remote positive
shear mixed with tension "c ³ 89># and compression " for c × 89>#[ "Note that the near tip behavior switches from
{{tensile|| to a transitory {{shear|| to eventually a {{compressive|| state[# Each curve corresponds to two di}erent values
of c\ one is enclosed in parenthesis\ while the other is not[

on the sign of the change\ a change of 11[4> in the value of c about c � 56[4> can lead to quite
disproportionate changes in mpl[ Thus\ there is hardly any change in mpl as c decreases from 56[4Ð
34>[ However\ the corresponding change is substantial as c increases from 56[4Ð89>[ The change
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is even more signi_cant physically\ because a tensile near!tip state is expected to lead to opening
of the crack\ while a compressive near!tip state is expected to lead to crack closure[ A compressive
near!tip state is observed even for c × 89>[ Su.ciently close to the crack tip\ these curves will
likely approach mpl"C#"� −0[966#\ which is the mode!mix for the asymptotic compressive solution[
This certainly appears to be the case for c � −046[4>[

Figure 1"b# also shows the corresponding results for far!_eld loading _elds with increasing
negative shear\ and also for negative shear mixed with compression for c ³ −89>[ The values of
c are noted in parenthesis[ Note that\ the curves for c � −11[4\ −34\ −56[4\ and −89> can be
obtained by applying a shift of ¦1 to the curves for c � 046[4\ 024\ 001[4\ and 89>\ respectively[
This is re~ected on the right side of the _gure where the new values of m] ð9[4\ 2Ł are noted[
The results suggest that even as the negative shear component of the applied loading increases
signi_cantly\ the near!tip tensile state is preferred[ This is true even for applied pure negative shear
"c � −89>#[ As c decreases from −89 to −001[4>\ the near!tip state suddenly switches from
tension to compression[ Thus\ disproportionate changes occur in the value of mpl\ as c changes by
211[4> about c � −89>[

Note that\ in Fig[ 1"a#Ð"b#\ results are shown for values of c spanning three!quarters of the
complete period of −191[4> ¾ c ¾ 046[4>[ The quarter!period −191[4> ¾ c ¾ −001[4> has been
omitted in the above presentation because the behavior in the above range is similar to that in the
range −11[4> ¾ c ¾ 56[4>\ only shifted by ¦1[ Thus\ in the range −191[4> ¾ c ¾ −001[4>\ the
near!tip behavior will be compressive*and will lead to crack closure[

The results presented so far provide connections among a wide range of applied loading _elds
and the associated near!tip states[ Next\ an attempt is made to interpret these results physically in
order to gain further insight into the behavior of a steadily and quasi!statically growing interfacial
crack under varying remote mode mix[ In the range −11[4> ¾ c ¾ 56[4>\ the small scale yielding
solutions appear to be strongly attracted "in the sense of a strong convergence# to the near!tip
tensile state[ The attraction appears to be strongest for c � 11[4>[ It decreases as c moves away
from 11[4>[ More interestingly however\ there is a sudden switch in the near!tip state from tension
to compression as c increases from 56[4Ð89>[ Thus\ for values of c su.ciently higher than 56[4>
the crack tip appears to be shielded from the applied loading _elds\ because the associated near!
tip states\ as predicted by the small scale yielding results\ are primarily compressive except possibly
for a very narrow range between 56[4> and 89> where a positive!shear near!tip state is possible[
For negative applied shear\ the near!tip behavior of the small scale yielding solutions beyond
c � −11[4> is somewhat elusive[ The _nite element results suggest a near!tip tensile state\ whereas
on physical grounds "considering that the crack is along the interface between a ductile material
and a rigid substrate# a negative applied shear can be expected to lead to crack closure[ It is
possible that the solutions in this range are attracted to a near!tip tensile state at length scales that
are so small that any assessment based on such a near!tip behavior may not be physically relevant[
Note\ however\ that the small scale yielding results strongly suggest that out of the four possible
near!tip states that were predicted by the asymptotic analysis\ either the tensile state or the
compressive state is preferred over a signi_cant range of the applied loading _elds[

A tensile near!tip state is conducive to further propagation of the crack\ whereas a compressive
near!tip state is detrimental to it[ On the basis of this observation\ a far _eld loading with c � 11[4>
will be most conducive to crack propagation\ and hence will correspond\ in some sense\ to minimum
interfacial toughness[ As c moves away from 11[4>\ it is expected that more energy needs to be
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expended to re!orient the _elds from their applied mixed!mode states to the near!tip tensile state
with an associated mpl"T# that is very di}erent from the applied mel[ This can be expected to
translate to an increase in the interfacial toughness as c moves away from 11[4>[ When c is
su.ciently far from 11[4>\ the near!tip state switches from tension to compression\ resulting
in in_nite interfacial toughness "crack closure instead of crack growth#[ The above qualitative
dependence of interfacial toughness on remote mode mix\ suggested by the small scale yielding
results\ is consistent with experimental observations "Cao and Evans\ 0878^ Liechti and Chai\
0881#\ and prior theoretical predictions "Liechti and Chai\ 0881^ TH\ Bose and Ponte Castan½eda\
0884#[ It may be noted that\ the toughening behavior suggested by the small scale yielding results
is related to the fact that the near!tip stress state continues to be tensile or compressive even when
the remote stress state is mixed in nature[ Recall that the latter is a consequence of plasticity\ since
in the absence of plasticity the near!tip state is not necessarily tensile or compressive\ but varies
continuously with a varying remotely applied stress state[ This led BPC to refer to this toughening
mechanism as a ductile mechanism[

The physical relevance of asymptotic near!tip _elds is commonly evaluated "Deng and Rosakis\
0881^ Sharma and Aravas\ 0882^ Omprakash and Narasimhan\ 0885# by expressing their regions
of validity as a fraction of the crack tip plastic zone size[ Under the assumption that the fracture
process zone is well embedded within the crack!tip plastic zone\ the asymptotic _elds are physically
relevant if their regions of validity are {{signi_cant|| fractions of the plastic zone size[ From the
results presented in this section\ an estimate for the region of validity of any one of the four
asymptotic states can be obtained by measuring the distance of the point farthest from the crack
tip\ at which a mode mix function reaches the value of mpl corresponding to that state[ The region
of validity " for a given near tip state# estimated in the above manner will be a strong function of
c[ In the rest of this section\ all estimates for regions of validity will be expressed as fractions of
rp[ In the next section the plastic zones at the crack tip will be studied in detail\ and the regions of
validity will be expressed as fractions of actual sizes of the crack tip plastic zone[

All estimates for the region of validity reported here are expressed on a logarithmic scale[ The
region of validity of the tensile near!tip state is a maximum for c � 11[4>\ and is equal to −0[4[
This is equivalent to about 2) of rp[ It decreases as c shifts away from 11[4>\ and is equal to −1
"corresponds to 0) of rp# for both 9 and 34>[ There is a sharp decrease in the region of validity of
the tensile near!tip state as c becomes negative[ For c � −11[4> it is −2\ and decreases further
with decreasing c[ On the other hand\ for c × 34> the region of validity of the near!tip tensile
state also decreases\ but less rapidly than it does for negative shear[ For c � 56[4>\ the region of
validity is −1[4\ and for c − 89>\ the near!tip state switches from tension to compression[

Figure 2 shows the radial variations of the mode mix function n"r# in the range
−11[4> ¾ c ¾ 56[4>[ Recall that values of c in the above range lead to the tensile near!tip state\
and hence are important physically[ For 9> ¾ c ¾ 56[4>\ the curves for n"r# converge dramatically
towards npl"T# � 9[116[ The curve for c � −11[4> is ~at since the far!_eld and near!tip values of
n"r# are close[ The functions in the absence of plasticity are also shown with dashed lines[ The
di}erence in the behavior of the mode mix functions with and without plasticity is particularly
noticeable in the range 11[4> ¾ c ¾ 56[4>[ The results with plasticity strongly converge towards
the tensile near!tip state\ while those in the absence of plasticity do not[ The estimates for the
region of validity of the near!tip tensile state are also consistent with prior estimates obtained from
the results for the function m"r#[
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Fig[ 2[ Radial variations for the functions n"r# for the range of remote loadings "c# that leads to a near!tip tensile state[
The results in the absence of plasticity are also shown with dashed lines[

Figure 3 shows the corresponding results for the function l"r#\ both with and without plasticity\
in the range −11[4> ¾ c ¾ 56[4>[ In the presence of plasticity\ all the curves converge towards
lpl"T# � 1[581[

In conclusion\ the near!tip limits of the small scale yielding results are fairly consistent with the
predictions of the asymptotic analysis[ In particular\ the near!tip mode!mix appears to be inde!
pendent of the far!_eld mode!mix over signi_cantly wide ranges of the applied loading _elds[ The
tensile:compressive near!tip states appear to be preferred over the positive:negative shear near!tip
states[ Finally\ the connections between the near!tip and the remote states obtained from the
results in this section are suggestive of a ductile mechanism to explain the dependence of interfacial
toughness on the mode mix of the applied loading _elds[

2[1[ Near!tip plastic zones and effective stress histories of material particles

In this section\ the active plastic zones for −11[4> ¾ c ¾ 34> are presented[ Recall that\ in the
above range of the remote loading _elds\ the near!tip stress state is tensile[ The analytical results
for the elastic unloading and plastic reloading angles "see PCM# for a typical material particle
close to the crack tip are known from the asymptotic analysis\ and these can be compared with
the corresponding small scale yielding results[ The regions of validities of the asymptotic results\
which were expressed earlier as fractions of rp\ are assessed against the crack tip plastic zone sizes[

Figure 4"a#Ð"d# show the plastic zones for −11[4> ¾ c ¾ 34>[ Note that in Fig[ 4"a#\ which
shows results for c � −11[4>\ and in all subsequent plots for the plastic zones\ the crack lies along
the negative x0 axis\ with the crack tip at "9\ 9#[ The dotted regions represent material particles
that are actively yielding\ while the plain regions represent material particles that are currently
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Fig[ 3[ Radial variations of the functions l"r# for far _eld loading _elds "c# that lead to a near!tip tensile state[ The
results in the absence of plasticity are also shown with dashed lines[

deforming elastically[ The regions can be distinguished more precisely based on the deformation
history of material particles as the crack tip moves past these particles[ In front of the crack and
far away from it\ corresponding to large positive values of x0\ a material particle begins loading
elastically "based on the assumption that the material ahead of the crack is in an unstressed state#[
As the crack moves forward\ the same material particle comes closer to the crack tip\ and\ provided
that it is su.ciently close to the crack plane in the x1 direction " for example\ less than x1 � 9[4 in
Fig[ 4"a##\ it yields plastically due to the singular nature of the stresses close to the tip[ This initial
yielding results in a primary plastic zone "the vertical dotted {{leaf|| in Fig[ 4"a##[ As the crack tip
travels further\ the same particle begins unloading elastically[ This leads to the white region to the
immediate left of the primary plastic zone[ The material particle may reload plastically as it moves
into the wake of the crack\ if its e}ective stress reaches the current yield stress[ This results in a
secondary plastic zone "the thin dotted region attached to the upper crack face in Fig[ 4"a##[ While
most of the plastic zones at the tip of a growing crack follow the above pattern\ there are some
exceptions[ An exception occurs for the case presented in Fig[ 4"a# "not visible in the scale of the
_gure#\ in the form of an {{additional|| tiny region of actively yielding material extending roughly
from x0 � 9[0 to x0 � 9[14[ The origin of the additional plastic zone will become apparent from a
study of the e}ective stress history of a material particle as the crack tip moves past the particle[
This is discussed later in this sub!section[ Figure 4"b#Ð"d# show the evolution of the plastic zones
at c increases[ The result suggest that the e}ects of increasing positive shear are "i# to shift the
primary plastic zone to the right "in the direction of the positive shear force#\ and "ii# to result in
an overall increase in the size of the primary plastic zone\ the increase being particularly noticeable
in the transition from 11[4Ð34>[ The latter observation is consistent with the results of Leichti and
Chai "0881#\ where the authors noticed that the plastically deformed region under bond!normal
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Fig[ 4[ "a#Ð"d# ] Active plastic zones for c � −11[4\ 9\ 11[4\ and 34>\ respectively[

loading is extremely small in comparison to the plastic zones that developed under bond!tangential
loadings[ The height of the secondary plastic zones on the other hand appears to be decreasing
with increasing positive shear[ Note that in the above plots\ the full extent of the secondary plastic
zone "usually till x0 ¼ −7# is not shown[ The size of the plastic zone is often considered to provide
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a measure of the amount of plastic dissipation at the crack tip "see Leichti and Hanson\ 0877#[ If
the plastic dissipation is directly proportional to the size of the plastic zone\ then it could potentially
account for the increase in interfacial toughness with shear[ Liechti and Chai "0881# estimated the
rate of plastic dissipation during crack initiation[ They also considered the e}ects of viscoelastic
dissipation and interfacial asperity shielding\ and concluded that even the combined e}ects of all
three factors did not account for the sharp increase of toughness with increasing shear[

Figure 5"a#Ð"d# show enlargements of the plastic zones in the immediate vicinity of the crack
tip for −11[4> ¾ c ¾ 34>[ Two lines\ showing the asymptotic predictions for unloading "con!
tinuous line# and reloading "broken line#\ respectively\ are also included in each plot[ Although
the asymptotic unloading and reloading angles do not agree precisely with the _nite element results\
the angular extent of the intermediate elastic region appears to be in reasonably good agreement[

Figure 6 shows the e}ective stress history of a material particle as it approaches the crack tip
and then moves away from it[ The height of the particle above the interface is given by
x1 ¼ 1[4×09−2[ The remote loading _eld corresponds to c � −11[4>[ The curve has three peaks\
two of which can be seen in this plot[ The _rst peak is close to x0 � 9[0\ while the second peak
occurs at a very small negative value of x0[ The _rst peak is such that se exceeds the initial yield
stress s9 � z2t9 � 9[90621\ before the peak is reached[ The particle unloads at this peak where
s¾ e � V"se#\0 � 9[ This leads to the small plastic zone between 9[0¾ x0 ¾ 9[14\ which was referred
to as the {{additional|| plastic zone in a previous paragraph[ This {{additional|| zone is an exception\
and is followed by the more common pattern of deformation history leading to primary and
secondary plastic zones\ respectively[ In fact\ the e}ective stress boundary history of a material
particle has three peaks for all values of c for which results are presented in this section "the plots
for other values of c are not shown here#[ However\ the value attained by se at its _rst peak is well
below s9 in all the other cases\ and hence there is no {{additional|| plastic zone[

The corresponding results for c � 56[4> "not shown here# are similar[ However\ due to a decrease
in the region of validity of the asymptotic tensile solution\ the asymptotic unloading and reloading
angles do not compare well with the _nite element results[ In the latter case\ a better comparison
may result from further resolution of the near!tip region[

The regions of validity of the asymptotic _elds can be expressed as fractions of the actual sizes
of the crack!tip plastic zones[ Thus\ for c � 11[4> the region of validity is approximately 2) of rp

"�0#[ In terms of the maximum size of the actual plastic zone "see Fig[ 4"c##\ which is approximately
9[5 for this case\ the region of validity is about 4)[ The relative size of the region of validity of
the asymptotic _elds for neighboring values of c is similar\ but it decreases for more extreme
values of c[ In this context\ it is relevant to mention that McClintock and Argon "0855*see Figure
05[02 in this reference# show an example of a cracked structure\ with the crack!tip region viewed
at progressively coarser length scales[ The grains\ inclusions\ and voids are at a distance " from the
crack tip# of 09−2 cm or even lower\ as compared to the elastic singularity at a distance of 0 cm[
Assuming that the fracture mechanism is primarily growth and coalescence of voids occurring at
length scales comparable to those suggested by McClintock and Argon\ the regions of validity of
our near!tip asymptotic _elds for the steadily growing crack can thus be seen to be physically
relevant[

However\ it should be noted that\ without a conservation integral to determine the stress intensity
factor\ the near!tip solutions cannot be used in the same manner as the HRR "Hutchinson\
0857^ Rice and Rosengren\ 0857# singularity _elds for a stationary crack[ However\ the near!tip
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Fig[ 5[ "a#Ð"d# ] Near!tip regions magni_ed to show comparisons between the _nite element " for c � −11[4\ 9\ 11[4\
and 34>\ respectively# results and the prediction from the asymptotic analysis for the {{tensile|| near!tip solution[ The
asymptotic elastic unloading and plastic reloading angles are shown with continuous and broken lines\ respectively[

asymptotic solutions for the steadily propagating crack do predict\ rather accurately\ certain
important information about the problem\ such as the near!tip mode mix[ In addition\ as shown
in a later section of this paper\ they suggest the potential usefulness of a standard crack growth
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Fig[ 6[ E}ective stress history of a material particle as the crack tip moves past it[

criterion "the use of which obviates the need to stipulate critical conditions on the near!tip
deformation _elds# in the context of predicting the dependence of interfacial toughness on mode
mix\ at least for relatively strong interfaces[ Finally\ given that the numerical simulation of crack
growth problems is notoriously di.cult\ it is helpful to have asymptotic _elds to check the
numerical simulations against[ At the very least\ the near!tip asymptotic solutions of this work
could be used in such a manner[

2[2[ Plastic stress intensity factor

The functions Bij"r\ u# de_ned by relation "07# are evaluated for di}erent values of c[ The known
analytical results for the asymptotic tensile solution provide some of the ingredients necessary in
evaluating Bij"r\ u#[ Figure 7 shows the radial variations of Byy at several values of u\ for c � 11[4>[
Far from the crack tip the elastic singular _elds dominate\ and hence Byy is a function of u[ As the
crack tip is approached\ the functions at di}erent values of u appear to converge within a narrow
band and ~atten out[ This behavior corresponds to a tendency of the functions to approach a
limiting value that is independent of u as r : 9[ This limiting value is the plastic stress intensity
factor\ Kpl\ for c � 11[4>[ It can likewise be evaluated at other values of c "the details are not
presented here#[ Theoretically\ at a given value of c\ the limit for Bij"r\ u# should be independent
of the !i j! component and the angle u[ Numerically\ however\ the predictions for Kpl depend on
these factors[ The variations in Kpl with these factors are fairly small for values of c close to 11[4>\
where the asymptotic tensile _eld has fairly large ranges of validity[ The variations increase as the
region of dominance of the asymptotic tensile _eld decreases[ For consistency\ in all subsequent
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Fig[ 7[ Radial variations of the function Byy at several values of u and for c � 11[4>[

calculations utilizing the plastic stress intensity factor\ the value of Bxx at u � 89> and at the fourth
data point " from the crack tip# is used as Kpl[

2[3[ Radial variations of the stresses

If the stress _elds are variable!separable and power singular in r\ then\ on a logÐlog plot of sij

vs r for given values of u and c\ a stress _eld of the form "02# would appear as a straight line with
slope s[ However\ in order to evaluate "02#\ the asymptotic results need to be supplemented by
Kpl"c#[ On the other hand\ the elastic _elds are not variable!separable for non!zero values of o\
and hence a logÐlog plot of sij vs r " for given values of u and c# will be a curve and not a straight
line[ However\ as the results to be presented next illustrate\ for su.ciently small values of o the
curves appear as straight lines[ In order to satisfy the imposed boundary conditions of the small
scale yielding problem in the far!_eld "r : �#\ the _nite element results for log sij vs log r remote
from the crack tip can be expected to be coincident with the corresponding elastic results[ Likewise\
close to the crack tip "r : 9# the _nite element results can be expected to be identical to the line
representing the asymptotic stress state[

In this section the radial variations of the stresses obtained from three di}erent sources are
presented[ These are the asymptotic elastoplastic\ the linear!elastic\ and the _nite element stress
_elds\ respectively[ The radial distance r is normalized such that rp � 0[ In each plot\ results from
all three sources are shown[ The _nite element results are shown with open circles\ the asymptotic
results with continuous lines\ and the linear elastic results with broken lines[ It should be noted
that\ for a given value of c all asymptotic stress components are computed based on a single value
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of Kpl\ namely\ that given by the limit "as r : 9# of Bxx at u � 89>[ Thus\ the results can be expected
to provide an overall check on the near!tip variations as predicted by the asymptotic analysis[ The
above method for presenting the radial variations of the stress _elds has the following advantages[
Firstly\ close to the crack tip\ the extent to which the _nite element results approach the asymptotic
predictions can be assessed[ Secondly\ the distance from the crack tip over which good agreements
are observed between the _nite element and the asymptotic results will provide another estimate
of the region of validity of the asymptotic _elds[ Finally\ these plots can also provide valuable
information on the behavior of the stress _elds at {{intermediate|| "regions that fall between the
near!tip and the far!_eld# distances from the crack tip[ The latter can be important in determining
the relevance of higher order terms in the near!tip asymptotic expansion of stress _elds "O|Dowd
and Shih\ 0880\ 0881^ Sharma et al[\ 0884#[

Figure "8# shows radial variations of syy and sxx at c � 9>[ The _gure is further sub!divided into
four parts "a#Ð"d#^ with "a#Ð"b# showing radial variations of syy at u � 9>\ and 89>\ respectively^
and "c#Ð"d# showing radial variations of sxx at u � 34 and 024>\ respectively[ In the following
discussion\ the important features of Fig[ 8"a# are highlighted with the understanding that similar
observations also hold for all the other _gures in this section[

The most important point to note from Fig[ 8"a# is the bi!linear nature of the _nite element
stress _eld[ Close to the crack tip\ the _nite element results are on top of the line representing the
asymptotic near!tip solution^ while\ remote from the crack tip they are on top of the line rep!
resenting the elastic solution[ Another important observation is that close to the crack tip\ the
slope of the line corresponding to the _nite element results is close to the slope of the line
representing the asymptotic solution[ The above observations have the following implications[ The
linear near!tip behavior of the small scale yielding stress _elds in the _gure suggests variable!
separability of the power singular type as r : 9[ The fact that the slopes are close implies that the
strength of the singularity of the stress _elds\ as computed from the small scale yielding results\ is
close to the corresponding asymptotic prediction\ s[ These observations con_rm that the stress
_elds close to the crack tip are indeed given by the asymptotic results "02#[ It may be noted that
good agreements are observed between the _nite element and the asymptotic results up to a
distance of −0[4 on the logarithmic scale[ This provides yet another estimate of the region of
validity of the asymptotic tensile stress state[

The results for c � 11[4> "not shown here^ see Bose "0884# for further details# are not signi_cantly
di}erent from the corresponding results for c � 9>[ The region of validity of the tensile asymptotic
solution\ as predicted by these results\ is between −0[4 and −0 on the logarithmic scale[ For
c � 34>\ there is a signi_cant decrease in the region of validity of the asymptotic tensile solution
to approximately −1 on the logarithmic scale[ Thus\ the region of validity appears to be a strong
function of c\ and the dependence on c is consistent with that obtained from the results for the
mode mix functions[

2[4[ An`ular variations of stress _elds

In this subsection\ the small scale yielding stress!deviator _elds are plotted along a contour
surrounding the crack tip\ and the results are compared against the corresponding asymptotic
_elds along the same contour[ For the _nite element mesh used\ it is a matter of convenience to
choose data points along a half!square contour that surrounds the crack tip in the ductile material
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Fig[ 8[ "a#Ð"b# ] Radial variations of stress component syy at u � 9 and 89>\ respectively\ for a far!_eld loading with
c � 9> ^ "c#Ð"d# ] corresponding results for sxx at u � 34 and 024>\ respectively[ In all the plots\ the open circles represent
the _nite element results\ the continuous lines represent the asymptotic near!tip stress state "tensile#\ and the broken
lines represent the elastic stress _elds[ The radial distance r is normalized such that rp � 0[
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Fig[ 8[*Continued[

"upper half plane#[ The average distance of the contour from the crack tip is approximately a
fraction of a percent of rp[ Thus\ the contour is well within the plastic zone for most values of
9 ¾ u ¾ p[ In terms of the _nite element mesh\ the contour is the _fth square {{emanating|| from
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the crack tip "see Dean and Hutchinson\ 0870\ for a similar approach#[ It may be noted that the
angular variations of the _elds\ as extracted in the above manner\ do not correspond to a _xed
value of r\ and hence cannot be directly compared to the deviators derived from the known angular
variations s½9

ij"u# of the asymptotic stress _eld of eqn "02#[ Instead\ eqn "02# is used to compute the
deviators at the same values of r and u for which the _nite element results are extracted[ It is
important to note that\ in computing the asymptotic results for the angular variations of the stress
deviators for a given value of c\ a single value of Kpl has been used for computing all the deviator
components[ This value is the limit "as r : 9# of Bxx at u � 89>[ In the results to follow\ the _nite
element results are shown with open circles\ while the asymptotic results are shown with continuous
lines[

Figure 09"a#Ð"c# show the results for the stress deviator components syy\ sxx\ and sxy "�sxy#\
respectively[ In each plot the _nite element results are shown for c � 9\ 11[4\ and 34>\ respectively\
and the tensile asymptotic solution is superposed on the _nite element results with a continuous
line[ The results indicate that the angular variations of the stress deviator _elds are invariant to
changes in c except for a tiny shift "barely noticeable on the scale of the _gures# due to di}erent
values of Kpl[ This behavior of the small scale yielding results suggests that the e}ect of the far!
_eld mode mix is felt at the crack tip only through Kpl[ This is in agreement with the predictions
of the asymptotic analysis[ The _nite element results are in good agreement with the asymptotic
results for all values of u outside the range 049> ¾ u ¾ 079>[ Between 049 and 079> the _nite
element results for syy and sxx appear to be di}erent from the corresponding asymptotic predictions[

The _nite element results for c � 56[4 and −11[4> "not shown here# are also in good agreement
with the tensile asymptotic solution[

2[5[ Near!tip shear solution

Referring back to Fig[ 1"b#\ note that a sharp transition occurs in the near!tip behavior of the
mode mix functions "and hence the stress _elds# as c changes from 56[4Ð89>[ While the near!tip
stress state for c � 56[4> is predominantly tensile\ that for c � 89> is compressive[ This suggests
the possibility of a near!tip {{positive!shear|| state for some values of c between 56[4 and 89>[ A
closer inspection of the mode!mix functions in the above range of values of c "Fig[ 00# reveals that
for c � 72[6> the near!tip stress state is in good agreement with the asymptotic positive!shear
solution[ However\ even for a {{small|| change in the value of c to either 70 or 74[4>\ the near!tip
state switches from positive!shear to tension\ and compression\ respectively[ Based on the above
behavior of the stress _elds\ it appears that the asymptotic shear state may be {{unstable||\ and may
only act as a transitory intermediate state between the {{stable|| states of near!tip tension\ and near!
tip compression\ respectively[ Results for radial and angular variations of the near!tip shear state
were obtained in a manner similar to those for a near!tip tensile state[ However\ for the sake of
brevity detailed discussions are omitted here[

While it is not clear as to why the range of remote loading _elds for which the near!tip shear
state is realized is so narrow\ a plausible explanation might be in an inherent tendency of growing
cracks to propagate in a manner such that the near!tip _elds are of the tensile kind[ For cracks
propagating in homogeneous materials it is well!known that they reorient their direction of
propagation such that the near!tip state is one of mode I[ That something similar should happen
for an interfacial crack whose direction of propagation is predetermined by the presence of an
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Fig[ 09[ "a#Ð"c# ] Angular variations of the stress deviator components syy\ sxx\ and sxy\ respectively[ Each plot shows the
_nite element results for three di}erent mode mix values for which the near tip state is tensile[ The continuous line in
each plot represents the asymptotic {{tensile|| solution[ The data points are along a square contour that is at an average
distance from the crack tip of approximately 9[0) of the plastic zone size[
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Fig[ 09[*Continued[

Fig[ 00[ A closer look at the mode mix function m"r# in the range 56[4> ¾ c ¾ 89>[ The shear near!tip state results for
c � 72[6>[



K[ Bose et al[ : International Journal of Solids and Structures 25 "0888# 0Ð2317

interface is by no means obvious[ It is possible that this feature is an intrinsic property of the
growing crack and only experiments can verify to what extent this is true[

3[ Dependence of interfacial toughness on mode!mix] a ductile mechanism

Recent experiments by Cao and Evans "0878# and Liechti and Chai "0880\ 0881# indicate that
the toughness of an interface may depend strongly on the mode mix of the applied loading _elds[
This is especially true when at least one of the materials adjacent to the interface is ductile\ and
the interface itself is strong enough to cause plastic deformation in the ductile phase"s#[ In this
section\ we develop further a ductile mechanism\ originally proposed by BPC\ for explaining this
phenomenon in the context of slow crack growth[ One of the ingredients of the proposed mechanism
is the observation\ by PCM "see also BPC#\ that only four types of asymptotic solutions are
possible in the neighborhood of the tip of a crack propagating quasi!statically along the interface
between two generally distinct elastoplastic materials[ These solutions are {{tensile|| "or {{com!
pressive||#! and {{positive!shear|| "or {{negative!shear||# like in character\ with dominating tensile
"or compressive# and shear "positive or negative# stress components\ respectively\ in the line ahead
of the crack[ The second ingredient is the observation from the small scale yielding results presented
earlier in this paper that the tensile "or compressive#!like near!tip solution is usually preferred to
the shear!like solution for fairly large ranges of the prescribed\ remotely applied elastic mode mix[
Therefore\ making the hypothesis that the tensile!like asymptotic solution indeed governs the
behavior of the region in the immediate vicinity of the growing crack tip\ application of a standard
crack growth criterion leads to the requirement that the crack propagate with a _xed near!tip
crack opening pro_le[ Imposition of this crack growth criterion results in predictions for the
interfacial toughness as a function of the applied mode mix[ In the following paragraphs\ further
details of the mechanism and the predictions for the dependence of interfacial toughness on the
applied mode mix\ are discussed[

In the development to follow\ it is useful to introduce the dimensionless variables

r �
r
rp

"dimensionless radius#\ "19a#

sij �
sij

t"1#
9

"dimensionless stress#\ "19b#

ni � 0
E "1#

t"1#
9 1

vi

V
"dimensionless velocity#\ "19c#

where i\ j � 0\ 1\ 2[ The polar angle u\ and the phase angle c of the remotely applied elastic
singularity _elds are dimensionless\ by de_nition[

In terms of these dimensionless variables the remotely applied stress _elds "6# may be written
as]

s�
ab"r\ u# � Re"ei"c¦olnr#Łr−0:1s½ I

ab"u\ o#¦Im ðei"c¦olnr#Łr−0:1s½ II
ab"u\ o#\ "10#

while the near!tip asymptotic stress state may be written as]
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s9
ab"r\ u# � krss½9

ab"u#\ "11#

where k is a dimensionless amplitude factor depending on the applied phase angle c[ From
dimensional considerations\ it can be shown that\ in general\ k � k"c^ a"a#\ n"a#\ b\ l#\ where
l � t"0#

9 :t"1#
9 [ It is important to emphasize that s and s½9

ab"u# are known from the asymptotic analysis\
where k must be determined from a small scale yielding analysis[

Next\ using the de_nition of the tensile plastic stress intensity factor Kpl � limr:9

""1pr#−ssuu"r\ u � 9##\ it can be shown that

Kpl � k"c#"t"1#
9 #1s¦0"Kel#−1s "12#

so that k is a dimensionless plastic stress intensity factor serving to determine Kpl[
The small scale yielding results presented earlier determine Kpl as a function of c for the

ductile:brittle material pair considered[ This in conjunction with relation "12# determines k as a
function of c[

3[0[ Crack `rowth criterion

Given the hypothesis\ based on the _nite element small scale yielding results\ that the tensile
near!tip asymptotic solution holds for a _nite range of values of the remotely prescribed elastic
phase angle\ it is natural "see BPC# to prescribe a standard crack growth criterion "Rice\ 0871#\
requiring that the crack propagate with an invariant near!tip crack opening pro_le[ Equivalently\
the crack growth criterion may be expressed as the restriction that the crack propagate with a
constant plastic stress intensity factor\ or

Kpl � Kc\ "13#

where Kc is a material parameter that would need to be determined experimentally[
Referring to relation "12#\ and observing that k\ as determined by the solution of the small scale

yielding problem\ is a function of the phase angle c\ it can be concluded that there is a functional
relation between the steady!state value of the applied elastic stress intensity factor Kel and the
phase angle c\ namely\

Kel �"t"1#
9 # "1s¦0#:1s"k"c#:Kc#0:1s[ "14#

Relation "14# serves to identify a ductile mechanism explaining the widely reported experimental
observation of a strong dependence of interfacial toughness on phase angle[ In the next sub!section
the predictions for interfacial toughness\ as a function of the remote mode!mix\ are reported[

3[1[ Results for interfacial tou`hness

Figure 01"a#Ð"b# show two sets of results for the interfacial toughness[ Each _gure contains
three di}erent plots which are based on values of Kpl obtained from three di}erent choices for the
functions Bij in relations "07#Ð"08#[ Thus\ Fig[ 01"a# shows results for cases where Kpl has been
estimated from the functions Bxx at u � 89>\ Dxx at u � 024>\ and Dyy at u � 024>\ respectively\
where Dxx and Dyy share the same de_nitions as Bxx and Byy in relation "07#\ but with the stress
component sxx and syy replaced with the corresponding stress!deviator components sxx and syy\



K[ Bose et al[ : International Journal of Solids and Structures 25 "0888# 0Ð2329

Fig[ 01a[ Interfacial toughness "Kel# as a function of the applied mode mix c[ The di}erent curves correspond to estimates
for the plastic stress intensity factor obtained from sxx at u � 89>\ and syy and sxx\ respectively\ at u � 024>[

Fig[ 01b[ Interfacial toughness "Kel# as a function of the applied mode mix c[ The di}erent curves correspond to
estimates for the plastic stress intensity factor obtained from syy\ sxx and sxy\ respectively\ at u � 89>[

respectively[ Each plot shows the interfacial toughness\ as measured by Kel normalized by its
minimum value "Kel#min\ as a function of c[ Note that each plot has a common minimum value of
0\ and this is a consequence of the normalization with respect to "Kel#min which is evaluated
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separately for each case "the actual minimum values for the three cases are di}erent to the extent
the numerical estimates for Kpl are di}erent#[ The toughness plots have the U!shape that has been
observed experimentally\ yielding toughness increases of up to factors of _ve or even higher for
the steeper portions of the curves\ for relatively small changes in the applied mode mix c[ Also\
the minimum of these plots lie in the positive shear range\ and all the curves have some degree of
asymmetry about their minimum points\ with a steeper behavior in the direction of negative applied
shear[ These observations have the following consequences[ The U!shapes imply that the interfacial
toughness is a strong function of the applied mode mix c[ The position of the minimum "in the
positive shear range# suggests that the most favorable loading for continued steady propagation
of the crack is probably not pure tension\ but some combination of tension and shear[ The
asymmetry of the curves about their respective minimum points suggest that the resistance for
continued propagation increases faster for applied negative shear than it does for applied positive
shear[ The latter behavior is not surprising given that the crack is propagating along a brittle:ductile
interface\ where it is reasonable to expect positive shear to tend to open up the crack\ and negative
shear to tend to shut it[ Note that all the curves in Fig[ 01"a# appear to share a common minimum
position on the c!axis\ which is close to c � 04>[ Also\ all three plots are close to one another for
a fairly wide range of values of c about the minimum point[

Figure 01"b# shows another set of three plots for the interfacial toughness[ The results are based
on Kpl evaluated from the functions Byy\ Bxy\ and Bxx\ respectively\ at u � 89>[ All of the three plots
are close to one another in the vicinity of their common minimum which\ just like in Fig[ 01"a#\
also appears to be approximately at c � 04>[ Outside of this range\ for applied positive shear the
results based on Bxy appears to be underestimating the toughness enhancement over its minimum
value[ However\ for negative applied negative shear\ the predictions from the three di}erent sources
appear to be fairly close to one another[

The results presented in this section identi_es the role of plasticity in determining the interfacial
toughness as a function of the applied mode mix[ The predictions for interfacial toughness based on
the asymptotic results and the full!_eld _nite element results of the small scale yielding problem\ are in
good qualitative agreement with available experimental results[

Finally\ we note that TH have also recently proposed a model to predict theoretically the in~uence
of the remotely applied mode mix on interfacial toughness[ Their model involves a local fracture
criterion\ which not only accounts for the plastic dissipation in the ductile phase\ but additionally
incorporates the e}ect of the fracture processes on the total energy balance[ This is accomplished by
attributing a constitutive law "Needleman\ 0876# to the interface\ as already explored by these authors
in their investigation of crack propagation in homogeneous ductile solids "Tvergaard and Hutchinson\
0881#[ In addition\ their model is capable of predicting the full resistance curve behavior of the
propagating crack[ In this paper only steady!state propagation was considered[ Thus\ the present work
is complementary to the work of TH\ and should correspond\ in some sense\ to the strong!interface
limit of their steady!state results[ To be more precise\ it is suggestive that the toughening curves
predicted in this work are similar in character to the {{strong|| tensile!interface "large s¼:sY and dc

n:d
c
t #

toughness!curve predictions of TH "see Fig[ 7"b# in that reference#[ This is in spite of signi_cant
di}erences in the modeling of the problem\ including a fracture process zone in the work of TH vs
none here\ power!hardening in TH vs linear!hardening here\ and compressible behavior for the ductile
material in TH vs incompressible behavior here[ All of this appears to single out ductility as the main
mechanism accounting for the mixed!mode toughening e}ect[
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4[ Concluding remarks

The aim of this work has been to validate the results of an earlier asymptotic analysis of steady
quasi!static crack growth along a brittleÐductile interface under plane strain conditions\ and also
to assess the physical relevance of the asymptotic results[ To this end\ the small scale yielding
"abbreviated SSY in the rest of this section# problem is solved using the _nite element method\
and the results compared with those obtained previously from the asymptotic analysis[ It is
observed that close to the crack tip the results of the SSY problem are consistent with the
predictions of the asymptotic analysis[ In particular\ the SSY results con_rm that the near!tip
mode mix is\ to a large extent\ independent of the mode mix of the applied elastic _elds for
signi_cantly wide ranges of the applied mode mix^ and that in such cases\ the near!tip _elds feel
the e}ect of the far!_eld only through the plastic stress intensity factor[ Moreover\ the results of
the SSY problem suggest that out of the four possible near!tip states predicted by the asymptotic
analysis*either the {{tensile||\ or the {{compressive|| near!tip state will be preferred for most values
of the remote mode mix[ The {{positive!shear|| and the {{negative!shear|| near!tip states act more
like unstable transitory states between the more stable {{tensile|| and {{compressive|| near!tip states[
The corresponding results are signi_cantly di}erent in the absence of plasticity[ In the latter case\
the near!tip mode mix is not only strongly dependent on the applied elastic mode mix\ but also
varies continuously with it[ The regions of validity of the asymptotic _elds are estimated from the
SSY results[ It is observed that the regions of validity of the near!tip state are strong functions of
the applied elastic mode mix[ In addition\ certain observations based on the micromechanics of
ductile fracture suggest that the regions of validities of the asymptotic tensile _elds may be
signi_cant fractions of the plastic zone size[ This justi_es the use of information obtained from the
results of the asymptotic analysis to make global predictions on the behavior of an interfacial
crack*such as the dependence of interfacial toughness on the applied elastic mode mix[

The work also explores a ductile mechanism to explain the strong dependence of interfacial
toughness on applied mode mix during steady crack growth along strong interfaces between
generally distinct elastoplastic phases[ The results suggest that ductility plays an important role in
the understanding of this phenomenon[ Application of a standard crack growth criterion to a
sequence of small scale yielding problems with varying mixed!mode conditions predicts U!shaped
toughness!vs!phase angle curves[ Although the e}ect of varying the hardening parameter has not
been explored in the present work\ it is expected that the U!shape e}ect will be enhanced by
decreasing the hardening of the ductile phases "see Bose and Ponte Castan½eda\ 0884#[ Di}erences
in the properties of the materials adjacent to the interface lead to asymmetry in the toughness
curves[ In particular\ mixed!mode loadings with a _nite positive!shear component\ superimposed
on a larger tensile component\ actually appears to enhance crack growth\ whereas negative shear
has the opposite e}ect[ This is consistent with what can be physically or intuitively expected for
crack growth along the interface between a ductile and a brittle solid*namely that\ positive shear
should tend to open up the crack\ while negative shear should tend to shut it[ Connections have
been made between the toughening curves predicted in this work vs the {{strong|| tensile!interface
"large s¼ :sY and dc

n:d
c
t # toughness!curve predictions of TH[ It appears that in spite of signi_cant

di}erences in the modeling of the problem\ the _nal results of TH and the present work are similar
in essence[

Finally\ it may be noted that\ although linear!hardening does not model the uniaxial stressÐ
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strain response of most metals\ its application to the present class of problems can be amply
justi_ed[ The reader is referred to BPC for further discussion on this aspect of the problem[ It
should also be noted however that\ some preliminary _nite!element results for the full _eld problem
of steady quasi!static crack growth along the interface between a rigid material and a power!law
hardening ductile solid indicates that the values of mode!mix in the vicinity of the crack tip are
discrete and independent of the applied elastic mode mix[
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